
Context Awareness for Group Interaction Support
Alois Ferscha, Clemens Holzmann, Stefan Oppl

Institut für Pervasive Computing, Johannes Kepler Universität Linz

Altenbergerstraße 69, A-4040 Linz

{ferscha,holzmann,oppl}@soft.uni-linz.ac.at

ABSTRACT

In this paper, we present a prototypically implemented system for

supporting group interaction in mobile distributed computing

environments. First, an introduction to context computing and a

motivation for using contextual information for facilitating group

interaction is given. We then present the architecture of our

system, which consists of two parts: a subsystem for location

sensing, which acquires information about the location of users as

well as spatial proximities between them, and one for the actual

context-aware application, which provides services for group

interaction.

Keywords: Context awareness, group interaction, location

sensing, sensor fusion

1. INTRODUCTION
Today’s computing environments are characterized by an

increasing number of powerful, wirelessly connected mobile

devices. Users can move throughout an environment while

carrying their computers with them and having remote access to

information and services, anytime and anywhere. New situations

appear, where the user’s context – for example her current

location or nearby people – is more dynamic; computation does

not occur at a single location and in a single context any longer,

but comprises a multitude of situations and locations. This

development leads to a new class of applications, which are aware

of the context in which they run in and thus bringing virtual and

real worlds together.

Motivated by this and the fact, that only a few studies have been

done for supporting group communication in such computing

environments [Wang04], we developed a system, which we refer

to as Group Interaction Support System (GISS), that supports

group interaction in mobile distributed computing environments

in a way that group members need not be at the same place any

longer in order to interact with each other or just to be aware of

the others situation.

In the following subchapters, we will give a short overview on

context aware computing and motivate its benefits for supporting

group interaction. A software framework for developing context-

sensitive applications is presented, which serves as middleware

for GISS. Chapter 2 presents the architecture of GISS, and chapter

3 and 4 present the location sensing and group interaction

concepts of GISS in more detail. Chapter 5 gives a final summary

of our work.

1.1 What is Context Computing?
Many approaches have been made to define the notion of context.

A general definition is given by Merriam-Webster’s Online

Dictionary
1
, where context is defined as the “interrelated

1
 http://www.m-w.com

conditions in which something exists or occurs”. Because this

definition is very loose, many approaches have been made to

define the notion of context with respect to computing

environments.

Most definitions of context are done by enumerating examples or

by choosing synonyms for context. The term context-aware has

been introduced first in [Schi94] where context is referred to as

location, identities of nearby people and objects, and changes to

those objects. In [Brow97], context is also defined by an

enumeration of examples, namely location, identities of the

location, identities of the people around the user, the time of the

day, season, temperature etc. [Ryan97] defines context as the

user’s location, environment, identity and time.

We use a widely accepted and more formal definition, which

defines context as “any information than can be used to

characterize the situation of an entity. An entity is a person, place,

or object that is considered relevant to the interaction between a

user and an application, including the user and applications

themselves”. [Dey00]

Figure 1: Layers of a context-aware system

[Dey00] identifies four primary types of context information

(sometimes referred to as context dimensions) that are, in order to

characterize the situation of an entity, more important than others.

These are location, identity, time and activity, which can also be

used to derive other sources of contextual information (secondary

context types). For example, if we know a person’s identity, we

can easily derive related information about this person from

several data sources (e.g. day of birth or e-mail address).

According to this definition, [Dey00] defines a system to be

context-aware “if it uses context to provide relevant information

and/or services to the user, where relevancy depends on the user’s

task”. [Dey00] also gives a classification of features for context-

aware applications, which comprises presentation of information

and services to a user, automatic execution of a service and

tagging of context to information for later retrieval.

Context computing is based on two major issues, namely

identifying relevant context (identity, location, time, activity) and

using obtained context (automatic execution, presentation,

tagging). In order to do this, there are a few layers between (see

Figure 1). First, the obtained low-level context information has to

be transformed, aggregated and interpreted (context

transformation) and represented in an abstract context world

model (context representation), either centralized or

decentralized. Finally, the stored context information is used to

trigger certain context events (context triggering).

1.2 Group Interaction in Context
After these abstract and formal definitions about what context and

context computing is, we will now focus on the main goal of this

work, namely how the interaction of mobile group members can

be supported by using context information.

In [Fers00] we have identified organizational systems to be

crucial for supporting mobile groups (see Figure 2). First, there

has to be an Information and Knowledge Management System,

which is capable of supporting a team with its information

processing- and knowledge gathering needs. The next part is the

Awareness System, which is dedicated to the perceptualisation of

the effects of team activity. It does this by communicating work

context, agenda and workspace information to the users. The

Interaction Systems provide support for the communication

among team members, either synchronous or asynchronous, and

for the shared access to artefacts, such as documents. Mobility

Systems deploy mechanisms to enable any-place access to team

memory as well as the capturing and delivery of awareness

information from and to any places. Finally yet importantly, the

organisational innovation system integrates aspects of the team
itself, like roles, leadership and shared facilities.

Figure 2: Support for Mobile Groups [Fers00]

With respect to these five aspects of team support, we focus on

interaction and partly cover mobility- and awareness-support.

Group interaction includes all means that enable group members

to communicate freely and openly with all the other members. At

this point, the question how context information can support group

interaction comes up. We believe that information about the

current situation of a person provides a surplus value to existing

group interaction systems. Context information facilitates group

interaction by allowing each member to be aware of the

availability status or the current location of each other group

member, which again makes it possible to form groups

dynamically, to place virtual post-its in the real world or to

determine which people are around.

Most of today’s context-aware applications use location and time

only, and location is referred to as a crucial type of context

information [Chen00]. We also see the importance of location

information in mobile and ubiquitous environments, wherefore a

main focus of our work is on the use of location information and

information about users in spatial proximity.

Nevertheless, we believe that location, as the only used type of

context information, is not sufficient to support group interaction,

wherefore we also take advantage of the other three types, namely

identity, time and activity. This provides a comprehensive

description of a user’s current situation and thus enabling

numerous means for supporting group interaction, which are

described in detail in chapter 4.4.

When we look at the types of context information stated above,

we can see that all of them are single user-centred, taking into

account only the context of the user itself. We believe, that for the

support of group interaction, the current state of the group itself

has also be taken into account. Therefore, we have added a fifth

context-dimension group-context, which is more than the sum of

the individual member’s contexts. Group context includes any

information about the situation of a whole group, for example

how many members a group currently has or if a certain group
meets right now.

1.3 Context Middleware
The Group Interaction Support System (GISS) uses the software-

framework introduced in [Beer03], which serves as a middleware

for developing context-sensitive applications. This so-called

Context Framework is based on a peer-to-peer communication

architecture and it supports different kinds of transport protocols
and message coding mechanisms.

A main feature of the framework is the abstraction of context

information retrieval via various sensors and its delivery to a level

where no difference appears, for the application designer, between

these different kinds of context retrieval mechanisms; the

information retrieval is hidden from the application developer.

This is reached by so-called entities, which describe objects – e.g.

a human user – that are important for a certain context scenario.

Entities express their functionality by the use of so-called

attributes, which can be loaded into the entity. These attributes are

complex pieces of software, which are implemented as Java

classes. Typical attributes are encapsulations of sensors, but they

can also be used to implement context services, for example to
notify other entities about location changes of users.

Each entity can contain a collection of such attributes, where an

entity itself is an attribute. The initial set of attributes an entity

contains can change dynamically at runtime, if an entity loads or

unloads attributes from the local storage or over the network. In

order to load and deploy new attributes, an entity has to reference

a class loader and a transport and lookup layer, which manages

the lookup mechanism for discovering other entities and the

transport. XML configuration files specify which initial set of
entities should be loaded and which attributes these entities own.

The communication between entities and attributes is based on

context events. Each attribute is able to trigger events, which are

addressed to other attributes and entities respectively,

independently on which physical computer they are running.

Among other things, and event contains the name of the event and
a list of parameters delivering information about the event itself.

Related with this event-based architecture is the use of ECA

(Event-Condition-Action)-rules for defining the behaviour of the

context system. Therefore, every entity has a rule-interpreter,

which catches triggered events, checks conditions associated with

them and causes certain actions. These rules are referenced by the

entity’s XML configuration. A rule itself is even able to trigger

the insertion of new rules or the unloading of existing rules at

runtime in order to change the behaviour of the context system
dynamically.

To sum up, the context framework provides a flexible, distributed

architecture for hiding low-level sensor data from high-level

applications and it hides external communication details from the

application developer. Furthermore, it is able to adapt its

behaviour dynamically by loading attributes, entities or ECA-rules

at runtime.

2. ARCHITECTURE OVERVIEW
As GISS uses the Context Framework described in chapter 1.3 as

middleware, every user is represented by an entity, as well as the

central server, which is responsible for context transformation,

context representation and context triggering (cp. Figure 1).

A main part of our work is about the automated acquisition of

position information and its sensor-independent provision at

application level. We do not only sense the current location of

users, but also determine spatial proximities between them.

Developing the architecture, we focussed on keeping the client as

simple as possible and reducing the communication between

client and server to a minimum.

Each client may have various location and/or proximity sensors

attached, which are encapsulated by respective Context

Framework-attributes (“Sensor Encapsulation”). These attributes

are responsible for integrating native sensor-implementations into

the Context Framework and sending sensor-dependent position

information to the server. We consider it very important to

support different types of sensors even at the same time, in order

to improve location accuracy on the one hand, while providing a

pervasive location-sensing environment with seamless transition

between different location sensing techniques on the other hand.

All location- and proximity-sensors supported are represented by

server-side context-attributes, which correspond to the client-side

sensor encapsulation-attributes and abstract the sensor-dependent

position information received from all users via the wireless

network (sensor abstraction). This requires a database, where the

mapping of diverse physical positions to standardised locations is

stored.

The standardized location- and proximity-information of each

user is then passed to the so-called “Sensor Fusion”-attributes,

one for symbolic locations and a second one for spatial

proximities. Their job is to merge location- and proximity-

information of clients, respectively, which is described in detail in

Chapter 3.3. Every time the symbolic location of a user or the

spatial proximity between two users changes, the “Sensor

Fusion”-attributes notify the “GISS”-attribute, which controls the

application.

Because of the abstraction of sensor-dependent position

information, the system can easily be extended by additional

sensors, just by implementing the typically two attributes for

encapsulating sensors (some sensors may not need a client-side

part), abstracting physical positions and observing the interface to

the GISS.

Figure 3: Architecture of the Group Interaction Support

System (GISS)

The “GISS”-attribute is the central coordinator of the application

as it shows to the user. It not only serves as an interface to the

location-sensing subsystem, but also collects further context

information in other dimensions (like time, identity or activity).

Every time a change of the context of one or more users is

detected, the GISS evaluates the effect of these changes on the

user, on the groups he belongs to and on the other members of

these groups. Whenever necessary, events are thrown to the

affected clients to trigger context-aware activities, as changing the

presentation of awareness information or the execution of

services.

The client-side part of the application is kept as simple as

possible. Furthermore, modular design was not only an issue on

the sensor side but also when designing the user interface

architecture. Thus, the complete user interface can be easily

exchanged, if all of the defined events are taken into account and

are understood by the new interface-attribute.

The currently implemented user interface is split up in two parts,

which are also represented by two attributes. The central attribute

on client-side is the so-called “Instant Messenger Encapsulation”,

which on the one hand interacts with the server through events

and on the other hand serves as a proxy for the external

application the user interface is built on.

As external application, we use an existing open source instant

messenger – the ICQ
2
-compliant Simple Instant Messenger

(SIM)
3
. We have chosen and instant messenger as front-end

because it provides a well-known interface for most users and

facilitates a seamless integration of group interaction support, thus

2
 http://www.icq.com/

3
 http://sim-icq.sourceforge.net

increasing acceptance and ease of use. As the basic functionality

of the instant messenger – to serve as a client in an instant

messenger network – remains fully functional, our application is

able to use the features already provided by the messenger. For

example, the contexts activity and identity are derived from the

messenger network as it is described later.

The Instant Messenger Encapsulation is also responsible for

supporting group communication. Through the interface of the

messenger, it provides means of synchronous and asynchronous

communication as well as a context-aware reminder system and

tools for managing groups and the own availability.

The second part of the user interface is a visualisation of the

user’s locations, which is implemented in the attribute “Viewer”.

The current implementation provides a two-dimensional map of

the campus, but it can easily be replaced by other visualisations, a

three-dimensional VRML-model for example. Furthermore, this

visualisation is used to show the artefacts for asynchronous

communication. Based on a floor plan-view of the geographical

area the user currently resides in, it gives a quick overview of

which people are nearby, their state and provides means to

interact with them.

In the following chapters 3 and 4, we describe the location

sensing-backend and the application front-end for supporting
group interaction in more detail.

3. LOCATION SENSING
In the following chapter, we will introduce a location model,

which is used for representing locations; afterwards, we will

describe the integration of location- and proximity-sensors in

more detail. Finally, we will take a closer look on the fusion of

location- and proximity-information, acquired by various sensors.

3.1 Location Model
A location model (i.e. a context representation for the context-

information location) is needed to represent the locations of users,

in order to be able to facilitate location-related queries like “given

a location, return a list of all the objects there” or “given an

object, return its current location”. In general, there are two

approaches [Chen00] [Domn01]: symbolic models, which

represent location as abstract symbols, and a geometric model,

which represent location as coordinates.

We have chosen a symbolic location model, which refers to

locations as abstract symbols like “Room P111” or “Physicists

Building”, because we do not require geometric location data and

abstract symbols instead are more convenient for human

interaction at application level. Furthermore, we use a symbolic

location containment hierarchy similar to the one introduced in

[Schi95], which consists of top-level regions, which contain

buildings, which contain floors, and the floors again contain

rooms. We also distinguish four types, namely region (e.g. a

whole campus), section (e.g. a building or an outdoor section),

level (e.g. a certain floor in a building) and area (e.g. a certain

room). We allow regions to be nested (a related approach is the

location domain model described in [Leon98]) and we introduce a

fifth type of location, which we refer to as semantic. These so-

called semantic locations can appear at any level in the hierarchy;

they can also be nested, but they do not necessarily have a

geographic representation. Examples for such semantic locations

are tagged objects within a room (e.g. a desk and a printer on this

desk) or the name of a department, which contains certain rooms.

Figure 4: Symbolic location containment hierarchy

The hierarchy of symbolic locations as well as the type of each

position is stored in the database.

3.2 Sensors
Our architecture supports two different kinds of sensors: location

sensors, which acquire location information, and proximity
sensors, which detect spatial proximities between users.

As described above, each sensor has a server- and in most cases a

corresponding client-side-implementation, too. While the client-

attributes (“Sensor Abstraction”) are responsible for acquiring

low-level sensor-data and transmitting it to the server, the

corresponding “Sensor Encapsulation”-attributes transform them

into a uniform and sensor-independent format, namely symbolic
locations and IDs of users in spatial proximity, respectively.

Afterwards, the respective attribute “Sensor Fusion” is being

triggered with this sensor-independent information of a certain

user, detected by a particular sensor. Such notifications are

performed every time the sensor acquired new information.

Accordingly, “Sensor Abstraction”-attributes are responsible to

detect when a certain sensor is no longer available on the client

side (e.g. if it has been unplugged by the user) or when position

respectively proximity could not be determined any longer (e.g.

RFID reader cannot detect tags any longer) and notify the
corresponding sensor fusion about this.

3.2.1 Location Sensors
In order to sense physical positions, the “Sensor Encapsulation”-

attributes asynchronously transmit sensor-dependent position

information to the server. The corresponding location “Sensor

Abstraction”-attributes collect these physical positions delivered

by the sensors of all users, and make a database-lookup in order to

get the associated symbolic location. This requires certain tables

for each sensor, which map physical positions to symbolic

locations. One physical position may have multiple symbolic

locations at different accuracy-levels in the location hierarchy

assigned to, for example if a sensor covers several rooms. If such

a mapping could be found, an event is thrown in order to notify

the attribute “Location Sensor Fusion” about the symbolic
locations a certain sensor of a particular user determined.

We have prototypically implemented three kinds of location

sensors, which are based on WLAN (802.11b), Bluetooth and

RFID (Radio Frequency Identification). We have chosen these

three completely different sensors because of their differences

concerning accuracy, availability and administrative effort, in

order to evaluate the flexibility of our system (see Table 1).

The most accurate one is an RFID sensor, which is based on an

active RFID-reader. As soon as the reader is plugged into the

client, it scans for active RFID tags in range and transmits their

serial numbers to the server, where they are mapped to symbolic

locations. We also take into account RSSI (Radio Signal Strength

Information), which provides position accuracy of few

centimetres and thus enables us to determine which RFID-tag is

nearest. Due to this high accuracy, RFID is used for locating users

within rooms. The administration is quite simple; once a new

RFID tag is placed, its serial number simply has to be assigned to

a single symbolic location. Disadvantage is the poor availability,

which can be traced back to the fact that RFID readers are still

very expensive.

The second one is an 802.11b WLAN sensor. Therefore, we

integrated a purely software-based WLAN positioning system for

tracking clients on the university campus-wide WLAN

infrastructure. The reached position accuracy is in the range of

few meters and thus is suitable for location sensing at the

granularity of rooms. A big disadvantage is that the whole area

has to be calibrated with measuring points at a distance of 5

meters each. Because most notebooks have WLAN access and the

positioning-system is a software-only solution, nearly everyone is

able to use this kind of sensor.

Finally, we implemented a Bluetooth sensor, which simply detects

Bluetooth tags (i.e. Bluetooth-modules with known position) in

range, transmits them to the server and maps to symbolic

locations. Because of the fact that we do not use signal strength-

information in the current implementation, the accuracy is above

10 meters and therefore a single Bluetooth MAC address is

associated with several symbolic locations, according to the

physical locations such a dongle covers. This leads to the

disadvantage that the range of each Bluetooth-tag has to be

determined and mapped to symbolic locations within this range.

Table 1: Comparison of implemented sensors

 accuracy availability administration

RFID < 10 cm poor easy

WLAN 1-4 m very well
very time-
consuming

Bluetooth > 10 m well
time-

consuming

3.2.2 Proximity Sensors
Any sensor that is able to detect whether two users are in spatial

proximity is referred to as proximity sensor. Similar to the

location sensors, the “Proximity Sensor Abstraction”-attributes

collect physical proximity information of all users and transform
them to mappings of user-IDs.

We have implemented two types of proximity-sensors, which are

based on the fused symbolic locations on the one hand (see
chapter 3.3.1) and on Bluetooth on the other hand.

The Bluetooth-implementation goes along with the

implementation of the Bluetooth-based location sensor. The

already determined Bluetooth MAC addresses in range of a

certain client are being compared with those of all other active

clients, and each time the attribute “Bluetooth Sensor

Abstraction” detects congruence, it notifies the proximity sensor
fusion about this.

The second sensor is based on symbolic locations processed by

the Location Sensor Fusion, wherefore it does not need a client-

side implementation. Each time the fused symbolic location of a

certain user changes, it checks whether he or she is at the same

symbolic location like another user and again notifies the

proximity sensor fusion about the proximity between these two

users. The range can be restricted to any level of the location
containment hierarchy, for example to room granularity.

A currently unresolved issue is the incomparable granularity of

different proximity sensors. For example, the symbolic locations

at same level in the location hierarchy mostly do not cover the
same geographic area.

3.3 Sensor Fusion
Core of the location sensing subsystem is the sensor fusion. Its job

is to merge the measurements of various sensors, while coping

with differences concerning accuracy and sample-rate. According

to the two kinds of sensors described in chapter 3.2, we

distinguish between fusion of location sensors on the one hand,
and fusion of proximity sensors on the other hand.

The fusion of symbolic locations as well as the fusion of spatial

proximities operates on standardized information (cp. Figure 3).

This has the advantage, that additional position- and proximity-

sensors can be added easily or the fusion algorithms can be
replaced by ones that are more sophisticated.

Fusion is performed for each user separately and takes into

account the measurements at a single point in time only (i.e. no

history information is used for determining the current location of

a certain user). The algorithm collects all events thrown by the

“Sensor Abstraction”-attributes, performs fusion and triggers the

“GISS”-attribute if the symbolic location of a certain user or the

spatial proximity between users changed.

An important feature is the persistent storage of location- and

proximity-history in a database in order to allow future retrieval.

This enables applications to visualize the movement of users for
example.

3.3.1 Location Sensor Fusion
Goal of the fusion of location information is to improve precision

and accuracy by merging the set of symbolic locations supplied by

various location sensors, in order to reduce the number of these

locations to a minimum, ideally to a single symbolic location per

user. This is quite difficult, because different sensors may differ in
accuracy and sample rate as well.

The “Location Sensor Fusion”-attribute is triggered by events,

which are thrown by the “Location Sensor Abstraction”-attributes.

These events contain information about the identity of the user

concerned, her current location and the sensor by which the
location has been determined.

First, if the attribute “Location Sensor Fusion” receives such an

event, it checks if the amount of symbolic locations of the user

concerned has changed (compared with the last event). If this is

the case, it notifies the “GISS”-attribute about all symbolic
locations this user is currently associated with.

However, this information is not very useful on its own if a

certain user is associated with several locations. As described in

chapter 3.2.1, a single location sensors my deliver multiple

symbolic locations. Moreover, a certain user may have several

location sensors, which supply symbolic locations differing in

accuracy (i.e. different levels in the location containment

hierarchy). To cope with this challenge, we implemented a fusion

algorithm in order to reduce the number of symbolic locations to a

minimum (ideally to a single location).

In a first step, each symbolic location is associated with its

number of occurrences. A symbolic location may occur several

times if it is referred to by more than one sensor or if a single

sensor detects multiple tags, which again refer to several

locations. Furthermore, this number is added to the previously

calculated number of occurrences of each symbolic location,

which is a child-location of the considered one in the location

containment hierarchy (for example, if – in Figure 4 – “room2”

occurs two times and “desk” occurs a single time, the value 2 of

“room2” is added to the value 1 of “desk”, whereby “desk” finally

gets the value 3).

Afterwards, the algorithm eliminates all locations associated with

a certain user, which do not have the highest accuracy (i.e. the

maximum depth in the containment hierarchy). In a final step,

only those symbolic locations are left which are assigned with the
highest number of occurrences.

A further reduction can be achieved by assigning priorities to

sensors (based on accuracy and confidence) and cumulating these

priorities for each symbolic location instead of just counting the
number of occurrences.

If the remaining, fused locations changed (i.e. if they differ from

the fused locations the considered user is currently associated

with), they are provided with the current timestamp, written to the

database and the “GISS”-attribute is notified about where the user
is probably located.

Finally, the most accurate, common location in the location

hierarchy is calculated (i.e. the least upper bound of these

symbolic locations) in order to get a single symbolic location. If it
changes, the “GISS”-attribute is triggered again.

3.3.2 Proximity Sensor Fusion
Proximity sensor fusion is much simpler than the fusion of

symbolic locations. The corresponding proximity sensor fusion-

attribute is triggered by events, which are thrown by the

“Proximity Sensor Abstraction”-attributes. These special events

contain information about the identity of the two users concerned,

if they are currently in spatial proximity or if proximity no longer
persists, and by which proximity-sensor this has been detected.

If the sensor fusion-attribute is notified by a certain “Proximity

Sensor Abstraction”-attribute about an existing spatial proximity,

it first checks if these two users are already known to be in

proximity (detected either by another user or by another

proximity-sensor of the user, which caused the event). If not, this

change in proximity is written to a database with current

timestamp. Similarly, if the attribute “Proximity Fusion” is

notified about an ended proximity, it checks if the users are still

known to be in proximity, and writes this change to database if

not.

Finally, if spatial proximity between the two users actually

changed, an event is thrown to notify the “GISS”-attribute about

this.

4. CONTEXTSENSITIVE INTERACTION

4.1 Overview
In most of today’s systems supporting interaction in groups, the

provided means lack any awareness of the user’s current context,
thus being unable to adapt to her needs.

In our approach, we use context information to enhance

interaction and provide further services, which offer new

possibilities to the user. Furthermore, we believe that interaction

in groups also has to take into account the current context of the

group itself and not only the context of the individual group

members. For this reason, we also tried to retrieve information

about the group’s current context, out of the contexts of the group

members together with some sort of additional information (see
chapter 4.3).

The sources of context used for our application correspond with

the four primary context types given in chapter 1.1 – identity (I),

location (L), time (T) and activity (A). As stated before, we also

take into account the context of the group the user is interaction

with, so that we could add a fifth type of context information –

group awareness (G) – to the classification. Using this context

information, we can trigger context-aware activities in all of the

three categories described in chapter 1.1 – presentation of

information (P), automatic execution of services (A) and tagging
of context to information for later retrieval (T).

Table 2: Classification of implemented context-aware

activities

 L T I A G P A T

location visualisation X X X

group building support X X X X

support for synchronous
communication

 X X X X

support for asynchronous
communication

X X X X X X X

availability management X X X

task management support X X X X

meeting support X X X X X X

Table 2 gives an overview of activities we have already

implemented; they are described comprehensively in chapter 4.4.

The table also shows which types of context information are used

for each activity and the category the activity could be classified
in.

Reasons for implementing these very features are to take

advantage of all five types of context information in order to

support group interaction by utilizing a comprehensive knowledge
about the situation a single user or a whole group is in.

A critical issue for the user acceptance of such a system is the

usability of its interface. We have evaluated several ways of

presenting context-aware means of interaction to the user, until we

came to the solution we use right now. Although we think that the

user interface that has been implemented now offers the best

trade-off between seamless integration of features and ease of use,

it would be no problem to extend the architecture with other user
interfaces, even on different platforms.

The chosen solution is based on an existing instant messenger,

which offers us several possibilities to integrate our system (see

chapter 4.2). The biggest advantage of this approach is that the

user is confronted with an interface he is already used to in most

cases and that our system uses the messenger account as an

identifier, so that the user does not have to register a further

account anywhere else (for example, the user can use her already
existing ICQ

2
-account).

4.2 Instant Messenger Integration
Our system is based upon an existing instant messenger, the so-

called Simple Instant Messenger (SIM)
3
. The implementation of

this messenger is carried out as a project at Sourceforge
4
.

SIM supports multiple messenger protocols such as AIM
5
, ICQ

2

and MSN
6
. It also supports connections to multiple accounts at the

same time. Furthermore, full support for SMS-notification (where

provided from the used protocol) is given.

SIM is based on a plug-in concept. All protocols as well as parts

of the user-interface are implemented as plug-ins. Its architecture

is also used to extend the application’s abilities to communicate

with external applications. For this purpose, a remote control

plug-in is provided, with which external applications can control

the behaviour of SIM via a socket connection. This remote control

interface is extensively used by GISS for retrieving the contact

list, setting the user’s availability-state or sending messages. The

functionality of the plug-in was extended in several ways, for

example to accept messages for an account (as if they would have

been sent via the messenger network).

The messenger, more exactly the contact list (i.e. a list of profiles

of all people registered with the instant messenger, which is

visualised by listing their names as it can be seen in Figure 5), is

also used to display locations of other members of the groups a

user belongs to, thus providing location awareness without taking

too much space or requesting the user’s full attention. A more

comprehensive description of these features is given in chapter
4.4.

4.3 Sources of Context Information
While the location-context of a user is obtained from our location

sensing subsystem described in chapter 3, other types of context

than location we consider relevant for the successful support of
group interaction, too.

Local time as a very important context dimension can be easily

retrieved from the real time clock of the user’s system. Besides

location and time, we also used context information of user’s

activity and identity, where we use the functionality provided by

the underlying instant messenger system for. Identity (or more

exactly, the mapping of IDs to names as well as additional

information from the user’s profile) can be distilled out of the
contents of the user’s contact list.

Information about the user’s activity is only available in a very

restricted area that is to say about her activity at the computer

itself. Other activities, like making a phone call or something

similar, cannot be recognized with the current implementation of

the activity sensor. The only context-information used is the

4
 http://sourceforge.net/

5
 http://www.aim.com/

6
 http://messenger.msn.com/

instant messenger’s availability state, thus only providing a very

coarse classification of the user’s activity (online, offline, away,

busy etc.). Although this may not seem to be very much

information, it is surely relevant and can be used to improve or
even enable several services.

Having collected the context information mentioned above from

all available users, it is now possible, to distil some information

about the context of a certain group. Information about the

context of a group includes how many members the group

currently has, if the group meets right now, which members are

participating at a meeting, how many members have read which
of the available posts from other team members, and so on.

Therefore, some additional information like a list of members for

each group is needed. These lists can be assembled manually (by

users joining and leaving groups) or be retrieved automatically.

The context of a group is secondary context and is aggregated

from the available contexts of the group members. Every time the

context of a single group member changes, the context of the

whole group is changing and has to be recalculated.

With knowledge about a user’s context and the context of the

groups he or she belongs to, we can provide several context-aware

services to the user, which enhance her interaction abilities. A
brief description of these services is given in chapter 4.4.

4.4 Group Interaction Support

4.4.1 Visualisation of Location Information
An important feature is the visualisation of location information,

thus allowing users to be aware of the location of other users and
members of groups he or she joined, respectively.

As already described in chapter 2, we use two different forms of

visualisation. The maybe more important one is to display

location information in the contact list of the instant messenger,

right beside the name, thus being always visible while not

drawing the user’s attention on it (compared with a two-

dimensional view for example, which requires a own window for
displaying a map of the environment)

Due to the restricted space in the contact list, it has been necessary

to implement some sort of level-of-detail concept. As we use a

hierarchical location model, we are able to determine the most

accurate common location of two users. In the contact list, the

current symbolic location one level below the previously

calculated common location is then displayed. If, for example,

user A currently resides in room “P121” at the first floor of a

building and user B, which has to be displayed in the contact list

of user A, is in room “P304” at the third floor, the most accurate

common location of these two users is the building they are in.

For that reason, the floor (i.e. one level beyond the common

location, namely the building) of user B is displayed in the contact

list of user A. If both people reside on the same floor or even in
the same room, the room would be taken.

Figure 5 shows a screenshot of the Simple Instant Messenger
3
,

where the current location of those people, whose location is

known by GISS, is displayed in brackets right beside their name.

On top of the image, the heightened, integrated GISS-toolbar is

shown, which currently contains the following, implemented

functionality (from left to right): Asynchronous communication

for groups (see chapter 4.4.4), context-aware reminders (see

chapter 4.4.6), two-dimensional visualisation of location-

information, forming and managing groups (see chapter 4.4.2),

context-aware availability-management (see chapter 4.4.5) and
finally a button for terminating GISS.

Figure 5: GISS integration in Simple Instant Messenger
3

As displaying just this short form of location may not be enough

for the user, because he or she may want to see the most accurate

position available, a “fully qualified” position is shown if a name

in the contact-list is clicked (e.g. in the form of
“desk@room2@department1@1stfloor@building 1@campus”).

The second form of visualisation is a graphical one, which is

based on a 2-dimensional view of the floor (it is referred to as

level in the location hierarchy, cp. Figure 4) where the user is

currently located. Other levels of granularity like section (e.g.
building) and region (e.g. campus) are provided, too.

At these two-dimensional views, the current locations are shown

in the manner of ICQ
2
 contacts, which are placed at the currently

sensed location of the respective person. The availability-status of

a user, for example “away” if he or she is not on the computer

right now, or “busy” if he or she does not want to be disturbed, is

visualised by colour-coding the ICQ
2
-flower left beside the name.

Furthermore, the 2D-view shows so-called the virtual post-its,

which are virtual counterparts of real-life post-its and serve as our

means of asynchronous communication (more about virtual post-
its can be found in chapter 4.4.4).

Figure 6 shows the two-dimensional map of a certain floor, where

several users are currently located (visualised by their name and

the flower left beside). The location of the client, on which the

map is displayed, is visualised by a green circle. Down to the
right, two virtual post-its can be seen.

Figure 6: 2D view of the floor

Another feature of the 2D-view is the visualisation of location-

history of users. As we store the complete history of a user’s

locations together with a timestamp, we are able to provide

information about the locations he or she has been back in time.

When the mouse is moved over the name of a certain user in the

2D-view, “footprints” of a user, placed at the locations he or she

has been, are faded out the stronger, the older the location

information is.

4.4.2 Forming and Managing Groups
To support interaction in groups, it is first necessary to form

groups. As groups can have different purposes, we distinguish two
types of groups.

So-called static groups are groups, which are built up manually by

people joining and leaving them. Static groups can be further

divided into two subtypes. In open static groups, everybody can

join and leave anytime, useful for example to form a group of

lecture attendees of some sort of interest group. Closed static

groups have an owner, who decides, which persons are allowed to

join, although everybody could leave again at any time. Closed

groups enable users for example to create a group of their friends,
thus being able to communicate with them easily.

In contrast to that, we also support the creation of dynamic

groups. They are formed among persons, who are at the same

location at the same time. The creation of dynamic groups is only

performed at locations, where it makes sense to form groups, for

example in lecture halls or meeting rooms, but not on corridors or

outdoor. It would also be not very meaningful to form a group

only of the people residing in the left front sector of a hall;

instead, the complete hall should be considered. For these reasons,

all the defined locations in the hierarchy are tagged, whether they

allow the formation of groups or not. Dynamic groups are also not

only formed granularity of rooms, but also on higher levels in the

hierarchy, for example with the people currently residing in the
area of a department.

As the members of dynamic groups constantly change, it is
possible to create an open static group out of them.

4.4.3 Synchronous Communication for Groups
The most important form of synchronous communication on

computers today is instant messaging; some people even see

instant messaging to be the real killer application on the Internet.

This has also motivated the decision to build GISS upon an instant
messaging system.

In today’s messenger systems, peer-to-peer-communication is

extensively supported. However, when it comes to

communication in groups, the support is rather poor most of the

time. Often, only sending a message to multiple recipients is

supported, lacking means to take into account the current state of

the recipients. Furthermore, groups can only be formed of

members in one’s contact list, thus being not able to send

messages to a group, where not all of its members are known

(which may be the case in settings, where the participants of a
lecture form a group).

Our approach does not have the mentioned restrictions. We

introduce group-entries in the user’s contact list; enable him or

her to send messages to this group easily, without knowing who

exactly is currently a member of this group. Furthermore, group

messages are only delivered to persons, who are currently not

busy, thus preventing a disturbance by a message, which is
possibly unimportant for the user.

These features cannot be carried out in the messenger network

itself, so whenever a message to a group account is sent, we

intercept it and route it through our system to all the recipients,

which are available at a certain time. Communication via a group

account is also stored centrally, enabling people to query missed

messages or simply viewing the message history.

4.4.4 Asynchronous Communication for Groups
Asynchronous communication in groups is not a new idea. The

goal of this approach is not to reinvent the wheel, as email is

maybe the most widely used form of asynchronous

communication on computers and is broadly accepted and

standardized. In out work, we aim at the combination of
asynchronous communication with location awareness.

For this reason, we introduce the concept of so-called virtual post-

its, which are messages that are bound to a physical location.

These virtual post-its could be either visible for all users that are

passing by or can be restricted to be only be visible for certain

groups of people. Moreover, a virtual post-it can also have an

expiry date after which it is dropped and not displayed anymore.

Virtual post-its can also be commented by others, thus providing

some from of forum-like interaction, where each post-it forms a
thread.

Virtual post-its are displayed automatically, whenever a user

(available) passes by the first time. Afterwards, post-its can be

accessed via the 2D-viewer, where all visible post-its are shown.

All readers of a post-it are logged and displayed when viewing it,

providing some sort of awareness about the group members’
activities in the past.

4.4.5 Context-aware Availability Management
Instant messengers in general provide some kind of availability

information about a user. Although this information can be only

defined in a very coarse granularity, we have decided to use these

means of gathering activity context, because the introduction of an
additional one would strongly decrease the usability of the system.

To support the user managing her availability, we provide an

interface that lets the user define rules to adapt her availability to

the current context. These rules follow the form “on event (E) if

condition (C) then action (A)”, which is directly supported by the
ECA-rules of the Context Framework described in chapter 1.3.

The testing of conditions is periodically triggered by throwing

event (whenever the context of a user changes). The condition

itself is defined by the user, who can demand the change of her

availability status as the action in the rule. As a condition, the user

can define her location, a certain time (also triggering daily, every

week or every month) or any Boolean combination of these
criteria.

4.4.6 Context-Aware Reminders
Reminders are used to give the user the opportunity of defining

tasks and being reminded of those, when certain criteria are

fulfilled. Thus, a reminder can be seen as a post-it to oneself,

which is only visible in certain cases. Reminders can be bound to

a certain place or time, but also to spatial proximity of users or

groups. These criteria can be combined with Boolean operators,

thus providing a powerful means to remind the user of tasks that
he wants to carry out when a certain context occurs.

A reminder will only pop up the first time the actual context meets

the defined criteria. On showing up the reminder, the user has the

chance to resubmit it to be reminded again, for example five
minutes later or the next time a certain user is in spatial proximity.

4.4.7 Context-Aware Recognition and Notification of

Group Meetings
With the available context information, we try to recognize

meetings of a group. The determination of the criteria, when the

system recognizes a group having a meeting, is part of the

ongoing work. In a first approach, we use the location- and

activity-context of the group members to determine a meeting.

Whenever more than 50 % of the members of a group are

available at a location, where a meeting is considered to make

sense (e.g. not on a corridor), a protocol post-it is created at this

location and all absent group members are notified of the meeting
and the location it takes place.

During the meeting, the comment-feature of virtual post-its

provides a means to take notes for all of the participants. When

members are joining or leaving the meeting, this is automatically

added as a note to the list of comments.

As is the recognition of the beginning of a meeting, the

recognition of its end is still part of ongoing work. However, if

this will finally be implemented, all group members will get the

complete list of comments as a meeting protocol at the end of the
meeting.

5. CONCLUSIONS
This paper discussed the support of group interaction by using

context information. First, we introduced the notions of context

and context computing and motivated their value for supporting

group interaction.

Afterwards, we presented a prototypically implemented

architecture for supporting group interaction in mobile, distributed

environments. It is built upon a flexible and extensible

framework, thus enabling an easy adoption to available context

sources (e.g. by adding additional sensors) as well as the required

form of representation.

We have prototypically developed a set of services, which

enhance group interaction by taking into account the current

context of the users as well as the context of groups itself.

Important features are dynamic formation of groups, visualisation

of location on a two-dimensional map as well as unobstrusively

integrated in an instant-messenger, asynchronous communication

by virtual post-its, which are bound to certain locations, and a

context-aware availability-management, which adapts the

availability-status of a user to her current situation.

To provide location information, we have implemented a

subsystem for automated acquisition of location- and proximity-

information provided by various sensors, which provides a

technology-independent presentation of locations and spatial

proximities between users and merges this information using

sensor-independent fusion algorithms. A history of locations as

well as of spatial proximities is stored in a database, thus enabling

context history-based services.

6. REFERENCES
[Beer00] Beer, W., Christian, V., Ferscha, A., Mehrmann, L.

Modeling Context-aware Behavior by Interpreted ECA Rules. In

Proceedings of the International Conference on Parallel and

Distributed Computing (EUROPAR’03). (Klagenfurt, Austria,
August 26-29, 2003). Springer Verlag, LNCS 2790, 1064-1073.

[Brow97] Brown, P.J., Bovey, J.D., Chen X. Context-Aware

Applications: From the Laboratory to the Marketplace. IEEE
Personal Communications, 4(5) (1997), 58-64.

[Chen00] Chen, H., Kotz, D. A Survey of Context-Aware Mobile

Computing Research. Technical Report TR2000-381, Computer

Science Department, Dartmouth College, Hanover, New
Hampshire, November 2000.

[Dey00] Dey, A. Providing Architectural Support for Building

Context-Aware Applications. Ph.D. Thesis, Department of

Computer Science, Georgia Institute of Technology, Atlanta,
November 2000.

[Domn01] Svetlana Domnitcheva. Location Modeling: State of

the Art and Challenges. In Proceedings of the Workshop on

Location Modeling for Ubiquitous Computing. (Atlanta, Georgia,

United States, September 30, 2001). 13-19.

[Fers00] Ferscha, A. Workspace Awareness in Mobile Virtual

Teams. In Proceedings of the IEEE 9
th

 International Workshop on

Enabling Technologies: Infrastructure for Collaborative

Enterprises (WETICE’00). (Gaithersburg, Maryland, March 14-
16, 2000). IEEE Computer Society Press, 272-277.

[Leon98] Leonhard, U. Supporting Location Awareness in Open

Distributed Systems. Ph.D. Thesis, Department of Computing,
Imperial College, London, May 1998.

[Ryan98] Ryan N., Pascoe J., Morse D. Enhanced Reality

Fieldwork: the Context-Aware Archaeological Assistant. Gaffney,

V., Van Leusen, M., Exxon, S. (eds.) Computer Applications in
Archaeology (1997)

[Schi94] Schilit, B.N., Theimer, M. Disseminating Active Map
Information to Mobile Hosts. IEEE Network, 8(5) (1994), 22-32.

[Schi95] Schilit, B.N. A System Architecture for Context-Aware

Mobile Computing. Ph.D. Thesis, Columbia University,
Department of Computer Science, May 1995.

[Wang04] Wang, B., Bodily, J., Gupta, S.K.S. „Supporting

Persistent Social Groups in Ubiquitous Computing Environments

Using Context-Aware Ephemeral Group Service”. In Proceedings

of the Second IEEE International Conference on Pervasive

Computing and Communications (PerCom’04). (March 14-17,
2004). IEEE Computer Society Press, 287-296.

